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Let Q be an open bounded subset of R d, the d-dimensional space, and let f be an
unknown function belonging to H"'(Q), where m is an integer (m > dI2). Given the
values off at n scattered data point in Q known with error, i.e., given z, =f(t,) + F.,.
i = I, ..., n, where the 0i'S are i.i.d. random errors, we study the error E[ If- U AI~.Q],
where I'I~Q are the Sobolev semi-norms in H"'(Q) and U;, is the thin plate
smoothing' spline with parameter A, i.e., the unique minimizer of Alul~, +
(lIn) L:7~ I (u(t i ) - z,j2. Under the assumption that the boundary of Q is smooth
and the points satisfy a "quasi-uniform" condition, we obtain E[lf-u,Iz,Q]';;;
C[Al'" kI!'" Ifl~.Q+DI(nA(2k' .1)/2"')], k=O, I, ...,m-\. 1988 Academic Press. Inc

1. INTRODUCTION

Let Hm(Q), m> 1, be the Sobolev space

Hm(Q)={UE~'(Q)lf L ID'UI 2 <+oc},
!J l:xl ~m

where f!C'(Q) is the space of Schwartz distributions and

(1.1 )

(1.2)

is the usual multi-index notation for partial derivatives.
For m > d/2, let f be an element of Hm(Q) and let Z I' Z2, ... , z" satisfy

i= 1, ..., n, (1.3 )
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2 FLORENCIO 1. UTRERAS

where T= {t l , ... , ttl} is a finite set of scattered data points in Q and ti'

i = I, ... , n, are i.i.d. random variables with zero mean and variance v2
•

In order to approximate f it has been proposed to use the Dm-smoothing
splines (cf. [8, 15, 18, 19]) defined as the unique solution of the variational
problem

where

Minimize J;.{ u),
UE D-mL2(1RJ)

(1.4 )

and

It has been proved by Duchon (cf. [9]) that (1.4) has a unique solution
provided T contains a Y'm _ 1-unisolvent set, where Y'm _ 1 is the set of
polynomials defined on R d of total degree less than or equal to m - 1.
Moreover, Duchon [9] proved that the solution (J;. is given by

"
(J;.{t) = L cjKm(t - t j)+p(t),

j~ 1

(1.7)

where Km is the fundamental solution of the m-times iterated Laplacian
and p E Y'm _ 1, i.e.,

(1.8 )

Moreover, following Duchon [9] and Schwartz [14] we have for K m

{
c Itl2m-dK t _ m ,

m()- Cmlt!2m- dlog Itl,
dodd

deven
(1.9 )

and

l
(-1)d/2 + 1 + m

_ 22m - 1n(dj2)(m-I)!(m-dj2)
Cm

- F(dj2 - m)

22mn(dj2)(m - I)!

deven

dodd
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The coefficients c" ... , C ll and the polynomial of degree m - 1 can be
found solving the following system of equations:

II

n),ci+ L CjKm(ti- t) +p(tJl = Zi'
/~ ,

II

L cjq(t) = 0,
j~ 1

i = 1, ... , n

any q E m - 1.

(1.10)

( 1.11 )

For details and computational procedures see [11, 12, 19].
), > 0 is the smoothing parameter. For computational procedures to

choose ;, from the data see [7, 15, 19].
In this paper we aim to obtain error bounds of the type developed in

[13] for the case d = 1. The results obtained will be of the same type as
those obtained by Cox [6] for the Dm-smoothing splines based on a boun
ded domain (cf. [3, 6, 15]).

More precisely, we will show the following result.

THEOREM 1.1. Let Q be an open bounded domain satisfying the uniform
cone conditions and having a Lipschitz boundary. Define hmax and hmin as

hmax=sup inf It-til
!EQi=I ....• n

hmin=min Iti-tjl
i#-j

and assume that there exists a constant B> 0 such that

Then there exists ).0> 0 and constants Po and Qo such that

Q V2
£[1/'- .1 2 ]:<P >(m- j )/mlj'1 2 + 0. (J ,. j,a '" 0)' m.a n), (2j + d)/2m

for ;. ~ ;'0 and nJ. d/2m ~ I.

( 1.12)

(1.13)

(1.14)

(1.15)

To prove this theorem we will first recall some basic properties of
smoothing splines and give an expression for £[If - (J;I~,a] which will be
used to bound the error. In the third section we show relationships between
standard and discrete Sobolev norms. These results will be used in Sec
tion 4 to obtain the error estimates for exact data. In Section 5 we consider
the study of the eigenvalues related to the spline problem and show how
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they behave asymptotically. The result generalizes a previous result of the
author in one dimension and proves the conjecture by Wahba. In Section 6
we apply those results to bound the error in the presence of noise and
prove the main theorem.

2. BASIC PROPERTIES

In this section we collect several basic properties of Dm-smoothing
splines that have been pointed out by several authors (cf. [8,9,6,15]) and
obtain the basic convergence rates.

Let us first introduce some notation. For y E IR n we call Sn,ic(Y) the
smoothing spline of parameter), applied to the data y" ..., Yn' i.e., the uni
que solution to

(2.1 )

where

(2.2 )

Also for gEHm(Q), m>d/2 we define Sn,;(g) as

(2.3 )

where
(2.4 )

For uED- m L 2 (lR d
) we can define the bounded linear operator

as

T(u) = (aXila::.~. axJ :'i2"'irn~'
Finally, in the space [L 2(lR d

)]"'" x W define the norm

(2.5)

With these notations Sn,Jy) is the unique solution to the problem

Minimize III [Tu, u] - [0, y] If.
U E D- rnL2([Rd)

(2.7)
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Let ~." ~ be the inner product in [U([Rd)Y" X [Rn associated with
IH11 2

. Using now (2.7) we easily obtain the following:

),Ig - Sn,;(Y)I~ +~ f (g(t i ) - Sn,;.(y)(t;))2 + ),!SIl,;(Y)!;1l
ni~'

1 n 1 n

+- L (Yi-Sn,;(y)(ti)f=Algl~+- L (g(t;)-Y,f (2.8)
ni~l n'~1

Proof From (2.7) we observe that [T(SIl,;JY)), Sn,;(Y)] is the projec
tion of [0, y] onto

(2.9)

hence from the orthogonality of the projection we get

III [T(g), g] - [T(Sn,jy)), Sn,;(Y)] If + III [T(Sn,;(Y)), Sn,;(Y)] - [0, y] If

= III [T(g), g] - [0, y] 111 2
,

which is the same as (2.8). I
It is clear that Sn,;. is a linear operator; then

(2.10)

where t = (10" ..., enf is the vector containing the noise. This identity was
also used by Ragozin [13] in the case of one-dimensional splines. Thus,

since E( t) = 0. Here 1·1 ~,Q denotes the semi-norm

(2.12)

Also we have

(2.13 )

In (2. t t), (2.1 3) the first term corresponds to the error due to
regularization of the exact function f while the second term is due only to
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the noise. To get an upper bound of the error due to the noise we will have
to study the behavior of the eigenvalues of a matrix associated to the spline
problem. This is done in Section 5. In this section we obtain the error
bounds for the first term using the properties of Sn ;(f).

By substituting into (2.8) g =fQ, the unique mini'mum semi-norm exten
sion of f (see (3.2) below, we get

thus

(2.14 )

and

This concludes the proof of the following:

LEMMA 2.2. We have the following error bounds:

(i) If
Q

- Sn,;(f)I~ ~ IfQI~;

(ii) (lIn) L7~ I (fQ(tJ - Sn,;.(f)(tJ)2 ~ AlfQI~.

To use these results to obtain bounds for the terms If-Sn,jf)lk.Q we
need to relate IgI6,Q' Iglm.Q and (lin) L7~ 1 [g(tJ]2 and then use the inter
polation theory of Sobolev spaces (cf. [1,2]). We develop this relationship
in the next section. In one dimension these results were first obtained by
Ragozin [13]. In the case of multivariate splines Cox [6] and Wahba
[18] have already given proofs of Lemma 2.2.

3. DISCRETE AND STANDARD SOBOLEV SEMI-NORMS

We begin this section recalling a result from Duchon [10].

LEMMA 3.1. Let Q be an open set of [Rd satisfying a uniform cone con
dition, i.e., there exist r> 0 and e> 0 such that for any t E Q there exists a
unit vector ~(t) E [Rd such that the cone

qt, ~(t), e, r) = {t + h7; YJ E [Rd, IYJI = 1, YJ' ~(t) ~ cos e, 0 ~;. ~ r}

is entirely contained in Q.
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Then there exist constants M] and M 2 (depending on d and ()) and £
(depending on () and r) such that for any positive £ ~ £0' there exists T, c Q
satisfying

(i) B(t, £)cQf(}rany tE T"

(3.1 )

(iii) I 1BIt.M,,) ~ M 2 ,

IE T 1

where B(t, R) is the closed ball of radius r centered t and 1t. is the function
being equal to 1 for x in E and 0 for x ¢ E.

Remark. Condition (iii) means that any point in Q belongs to at most
M 2 balls B(t, MIG), tE T,.

Proof See [10].
For g E H I11 (Q) we can define a unique extension gO to D l11e(lRd) by

solving the variational problem (cf. [1 OJ)

Minimize lui;',.
liED ITlL2([Rd)

uIQ~!(

We have the following result connecting g and gO.

(3.2 )

LEMMA 3.2. Let r > 0 be such that B(O, R):::J Q. Then there exists a con
stant C (depending on R, m, d and Q) such that for any g E H I11(Q)

IgO
I6.B(o.RI + IgO

I;'I.B(O.R) ~ C(I gl60 + Igl;'l.o)· (3.3)

Proof In the space D I11L2(lRd) consider the norms

Ilullf= luI6.o+ lui;',

Ilull ~ = IuI6.B(o. R) + lui ;".

Given that D I11L2(lRd)/~n ,is a Hilbert space, D I11L2(lRd) together with
11·lli is a Hilbert space for i= 1, 2. Moreover the iojectionj: (D- I11 L 2(lR d),
II ·112) -+ (D m L 2( IR d

), II ·111) is continuous since

Ilj(u)11 T= lul6.o + lui;', ~ Ilun

Using the open mapping theorem we obtain that j , is continuous, so
there exists C, depending 00 R, Q, d and m such that

(3.4 )
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Thus for u = gil we have

IgilI 6,B(0, R) + Igill ~,B(O, R):(: IgilI 6,B(0,R) + IgQI~

:(: C)(lg
Q

I6,Q + IgQI~,Q)'

Now we apply Lemma 3.1 in [10] to obtain that there exists K (depending
on m, d and Q) such that

(3,5 )

(3.6)

We combine now (3.5) and (3.4) and get (3.3) for
C=Max(C h C)K). I

We are now ready to show the first inequality connecting discrete and
standard Sobolev norms, For the related result in the case d = 1 see
Ragozin [13].

THEOREM 3.3. Let hmax and hmin be defined as in (1.12) and (1.13) and
let Q be an open bounded set with Lipschitz boundary and satisfying a
uniform cone condition. Then there exists a constant Bo> 0 (depending only
on m, d, Q, B) and ho> 0 such that for any g E Hm(Q) h = hmax :(: ho we have

~ f (g(t;)f:(: Bo(lgI6,Q + h2mlgl~.Q)'
;= )

Proof According to Lemma 3.1 there exists constants M j, M 2 and
GO>O such that for G:(:Go there exists T£cQ satisfying (3.1). Let ho=M)Go
then for h = hmax :(: ho we can take G= hiM) :(: Go and obtain Th c Q such
that

(i) B(t,hIMj)cQ foranytET"

(ii) Q c UtE Tn B(t, MIG) = UtE Tn B(t, h),

(iii) Lt E Tn 1B(t.h):(: M 2'

Now, given (ii) for each i there exist tE Th such that t;EB(t, h). Consider
now the classical technique of scaling and translation to the origin. Using
the transformation x -+ (11h)(x - t) the ball B( t, h) is transformed into the
ball B(O,l) and the point t; into a point ~;= (l/h)(t;- t). Consider
gQ E D - m L 2( IR d ) as defined by (3.2). It is clear that

gQ(0 = gQ(t + hO

also belongs to D- mL2(lR d
), hence gQI B(0,2) E Hm(B(O, 2)). But for any

vEHm(B(O, 2)) we have V~EB(O, 1)

Iv( 0\2:(: sup IV( tW:(: Canst [I V!6,B(0,2) + Ivi ~,B(0,2)]
tEB(O, I)
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since m > d/2. Then

But

I Aill" h-dl ill2g 0,BIO,2) = g 0,B(I,211)

and

I Aill2 h 2m - d l [}1 2
g m,BIO,2) = g m,BII,211i'

thus

9

[g( t i)] 2 ~ Canst h -de Ig[}16,B(I,2h) + h2m
l gill ~,. BIUII)].

In this way for each t, we have selected one t such that tiE B(t, h). Let us
now add all the inequalities that we obtain in this way:

n

L: [g(t,)] 2~ Const h -d L: {I gill ~(I.2h) + h2m
l gill ~" B(I,2h)}'

i= I 1(1,)
r'= I ..... n

But it is clear that a particular t cannot be repeated in the sum more
than (2hmax/hmin)d times since that is an upper bound on the number of tl's

that B( t, 2h) can contain, so

where Q h = {XE [Rdl Ix- tl ~ 2h, any tEQ}.
Let R>O be such that B(O, R)=:>Q ho ' Then for h~ho, QhcB(O, R) and

we can apply Lemma 3.2 to obtain

Finally observe that

hd >. Vol(Q) ~
~ 2d V

d
n'

where Vd is the volume of the unit sphere in [Rd.

(3.8)
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Equations (3.7) and (3.8) give (3.6) for

This concludes the proof. I
Let U={b 1,b2 ,oo.,b M }, M=(d;;'/1l1 1 )=dim(&m __ d be an arbitrary

&m _ 1 -unisolvent set in Q. Let n( U) be the Lagrange interpolation operator
on &m _ 1, i.e., for any v E H m(Q), n( U) v is the unique element in &m 1

satisfying

(n(U) v)(b i ) = v(bJ, i= 1, 2, 00" M. (3.9 )

These polynomials have been extensively studied in the literature; see, for
example, [4] and the references therein. Let us now prove the last result of
this section.

THEOREM 3.4. Under the same hypothesis of Theorem 3.3 there exists a
constant Co> 0 (depending only on m, d, Q and B) and ho> 0 such that for
any g E Hm(Q) and h = hmax ~ ho we have

(3.10)

Proof Consider the &m _ 1 -unisolvent set defined by

iI' i2, 00" i d non-negative integers

(cf. [4]) and let Ii' i = 1, 00" M, be the Lagrange polynomials associated
with 0, i.e.,

Let L be defined as

A A {I,
((b i ) = 0,

i = j, hiE 0
i-/=j

(3.11 )

L = Max f 11,(x)1 2 dx,
1 ~ i~ M B(O,2Mll

(3.12)

where M, is defined in Lemma 3.1. Now given that the set of &m 1

unisolvent sets is open in [RMd (its complement is the set of solutions of an
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algebraic equation) there exists 0 < e5 < 1 such that if we choose h"
i = 1, ... , M, satisfying

(3.13 )

the set :J.B = {h I' ... , bM} is ~n- I -unisolvent. Also the Lagrange polynomials
17, i = I, ..., M, associated with ga depend continuously on {h I' ... , hM }, so ()
may be chosen so that

L h = Max r 117(xWdx::;::2L (3.14)
I ",,'>;M "BIO.2M,)

holds 'Vb satisfying (3.13).
Let us now apply Lemma 3.1 for c = 2h/e5 and h::;:: ho= 2e5co. For any

f E T, consider the transformation

which transforms B(O, 2) into B( f, c) c Q. Also the balls B(b" e5) are trans
formed into B(t+ (h/e5) b"h). Thus for i=l, ...,M there exists a point
frU!ET, such that fru )EB(l+(h/e5)bi ,h). Moreover, given the definition of
e5, the points {l rU)} ~ I form a 2l'm _ I -unisolvent set. Let us denote by Va the
set {lr(i)};~1 and by V={h,=(e5/h), (tru)-f), i=1, ...,M}cB(O,2). We
then have

LIt.MI,I In( Va) g(xW dx =G)" Llo.2Md jn( V) g(~W d~

for g(O=g(f+(h/e5) 0- Then

JB(I.MJI) In( Va) g(xW dx =Gr Llo.2MI) I'~l 17(0 g(h;f d~

(h)" M::;:: b M ;~I [g(h,)J2 Llo.2Md 117(~W d~

,,2M "~_ 7

::;:: h 7 L ;:-, (g(h;))-

" M
,,2ML,\, 2

::;:: h -gr L.... (g(trU))) .
i= 1

On the other hand we can apply the Lemma of Section 2 in [10] to con
clude that there exists a constant Do depending only on Q, m, d and e5 such
that

< D h2m l al2-....::::: 0 g m,B(t./vfll:j·
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Now we use the fact that UtE T, B( t, MIl» ~ Q and conclude that

Q 2 " (2M ~) d:f, 2 2m" Q 2Ig lo.Q~2 1... [7L hi.... (g(tr(i))) +2Doh 1... Ig Im.B(t,MI£)'

t E T 1: I = 1 t E Tf:

and using now (3.1 )(iii) we obtain

IgQI6.Q ~ 2M2C~t:) hd itl (g(tJ)2 + 2M2Doh2mlgQI~.

We then apply Lemma 3.1 in [10] to conclude that

Finally we use the fact that

and obtain (3.10) with

C = M {4M2 Mt: Vol(Q) (hmax)d 2M KD }
o ax :>d V h. ' 2 o·

U d mm
(3.15)

This concludes the proof. I
In the next section we use these results to obtain an error bound for

If - Sn,;(f)I}Q' j = 0, ..., m.

4. ERROR BOUNDS FOR EXACT DATA

We can now use Theorem 3.4 for g =f Q
- S n. Af), Lemma 2.2 and (3.5)

to obtain

If- Sn,;(f)16,Q ~ Co [~itl (f(t i ) - Sn,;(f)(t i ))2 + h2mlf- Sn,;(f)I~.Ql
~ Co [AKlfl~,Q + h2mKlfl~,Q]

(4.1 )
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If- Sn,}(f)I~,f.?~ Iff.? - sn,;.(f)I~ ~ Klfl~,f.?' (4.2)

To get bounds for the intermediate derivatives we only need to apply the
interpolation inequality (see, for example, [1, Theorem 4.14]), which gives

If - Sn.;(f)I}f, ~ P(8 -(21/(m -jllf- Sn.;(f)16.f.? + 821f- Sn';(f)1 ~,.f.?)

for each e~ 80 ,

Let us take 8 = ), (m-j)/2m. Then for ), (m -j)/2m ~ 80 , j = 1, ..., m - 1, or

equivalently ), ~ 86m (80 < 1), we have

If- Sn,;(f)I}f.? ~ P(), -i/nllf- Sn,;(f)l6,f.? + )yn-j)/mlf- Sn.;(f)I~,.f.?)

~ P (; -j/mAc K [1 + _1_JlfI 2 +) (m-j)/m KI/'1 2 )-......;:: ~ 0 J.h-2m m,Q" , rn,Q

~ P K[1 +C +~l )(m- j )/mlfI 2
-....;: 0 )~h-2m .. HI,Q·

From here it is easy to get the following result.

(4.3 )

THEOREM 4.1. Let fE Hm(Q), where Q is an open bounded set with
Lipschitz boundary and satisfying a uniform cone condition. Let h = hmax and
hmin be defined as in (1.12), (1.13) and assume that there exists a constant
B> 0 such that

(4.4)

Then there exist )'0> 0 and Po> 0 such that for any 0 < ), ~ )'0 and
n), d/2m ~ 1 we have

1
{ - S .(f)1 2 ~ P ),(m- j )/mlfI 2 ,. 1'1." I.D 0 m,Q

O~j~m. (4.5)

Proof Given the definition of hmin and M) (cf. Theorem 3.3) It is clear
that

(i) B(ti,hmin/MdcQ;

(ii) B(t l , hmin/M]) n B(t" hmin/M() = 0.

Thus
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1 [(VOI(Q)]2m/dh2m ,;:: M2m __ B 2m
'" 1 n2m/d V

d
.

h2m
2m [Vol(Q)]2m/d 1

-,- ~ (M 1B) V 2m/d1
), d n 1'.

and using the hypothesis we get

h
2m

2m [VOI(Q)]2m/d
-.-~(BMd .

Ii. Vd

We finally put

and use (4.3) to get the desired result.

5. NOISY DATA AND EIGENVALUES ASSOCIATED TO

THE THIN PLATE SPLINES

In Section 2 we developed the basic formulas to bound the error f - (J;..

The bounds obtained contain two terms, one the error due to the
smoothing of exact data as studied in the preceding section and the other
that due strictly to the noise. More precisely (2.11) gives

and (2.13)

The first term of these two expressions can be bounded using the results
of the last two sections. To bound the last term we first write it in a stan
dard form (cf. [6,15,18]).
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First define the energy matrix i as the one representing the quadratic
form

yT iy = Minimum lui;',.
uEn-- mL2([.ld)

U(fi)=Yii= l, ...,ll

(5.1 )

The solution ii to (5.1) is the thin plate spline interpolating the data
YI' ... , y" at the knots of T. Using this matrix we can now write (cf.
[15, 19J) (1.5) as follows:

Thus the solution .x = (S".;(w)(t l ), ... , S".;(w)(t,,))! is given by

.x= (I + n).ij-l w =AU) w.

And we can write for w = I-:

1 T J.
=-1-: k(A) 1-:,

n

which together with the properties of £], i = I, ... , n, gives

[
I ~ 2J 1.2 2.E ~ i~l (SI1;(I-:))(t i )) =~ /; Tr(A (I.)).

On the other hand

IS".;(I-:)I;', = .X T i.x

=I-:TA(A)iA().)l-:

=~ I-: T[ AU)(A 1(A) -I) A (A) J I-:
nJ.

(5.2 )

(5.3 )

(5.4 )
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1 2 '
~ nA V Tr(A(A)). (5.5)

We can see that in the study of error bounds for the right-hand sides of
(5.4) and (5.5) the behavior of Tr(A(A)) and Tr(A 2(A)) is of fundamental
importance. We will analyze these quantities using the eigenvalues of A().)
or, more precisely those of nT. Let 0 ~ PIn ~ P2n ~ ... ~ Pnn be the eigen
values of nT in ascending order. Clearly they are all non-negative real num
bers since r is non-negative definite, and obviously

(5.6)

(5.7)

We now proceed to study the eigenvalues of nr using a similar technique
to that developed in [17] for the one-dimensional case.

THEOREM 5.1. Let Q be an open bounded domain with Lipschitz boun
dary and satisfying a uniform cone condition and let {t 1, ... , tn } satisfy (1.14).
Then there exist constants a, f3 > 0 (depending on Q, hmax/hmin and m) such
that

i = 1, 2, ..., n, (5.8 )

where PI ~ P2 ~ ... ~ Pn are the first n eigenvalues of the variational eigen
value problem

(5.9)

and

is the semi-inner product associated with 1·1 ~.

Proof (a) For i= 1, ..., M, Pin=Pi=O and (5.8) holds.
It is clear that (5.9) holds for any t/!E{!,Pml, p=O and rPED-mU(iR.d),

thus PI=P2'''PM=O since M=(d;;,mtl) dimension of {!,Pm-I' But
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flM+I#O since (t/J,r/J)m=O any r/JED- mL 2(fR.d) implies that It/JI~,=O and

t/JE2J,II-I'
On the other hand let Y i = t/J(tJ, i = 1, ... , n, for t/J E2J", . I; then clearly

yTFy=O

since the thin plate spline is the unique function in D- IIIL 2(!R d) taking the
values at .vi at t i minimizing I'I~, and It/JI~, = O.

Since r is symmetric this implies that flill = fl211 = ... fl Mil = O.
On the other hand if flM + I,ll = 0, the M + 1 eigenvector is formed by the

values of a polynomial of degree m - 1, which contradicts the fact that the
algebraic and geometric multiplicities must coincide. Thus fl M + 1.11 > O.

(b) Let x be an eigenvector of nF corresponding to a non-zero eigen
value. We have

nFx = flX

1
Fx = fl- x

n

or

any y E !R II.

i = 1, 2, ..., n,

(5,11 )

and let s be the thin plate spline interpolating YI' .."Y" at t l , ... , til' Then
clearly

and (5.11) becomes

yTFx=(s,r/J)1II (5.12)

(5.13 )

Thus any eigenvalue of nF is also an eigenvalue of (5.13) and vice versa.
Moreover, consider the eigenvalue problem:

Find t/J ED-IIIL 2( !R d) such that

(5,14)
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This problem, which is a "discretized" version of (5.9) has only n finite
eigenvalues. The reason for this becomes clear when we consider the
Raleigh quotient formulation of (5.14) (cf. [5,20]). But let us first observe
that any eigenvalue Il of (5.14) is an eigenvalue of (5.13). To see this we
only have to prove that the corresponding eigenfunction is a thin plate
spline, which is clear from (5.14) since it implies that

(5.15 )

which is the characterization of a thin plate spline (cf. [8]).
Thus, Ilin is characterized by the min-max formulation

M M
· lui;',

ax 1n 2"
codim(V)=i-~ UEV (lln)L.ln~1 [u(t. j )]v subspace of D-mL-(lHd)

(5.16)

For i = n + 1, the subspace

where ljJ In' ... , ljJ nn are the first n eigenfunctions of (5.14), has codimension
i-I = n.

Moreover, for ¢J E V we have I¢JI ~ # 0 (¢J iJ f!}m -1) and ¢J(tj ) = 0, j = 1, ... , n,
since {ljJ k.n}k ~ I is a basis for the space of thin plate splines. (It is a set of n
orthogonal elements of the space of dimension n.) Thus, for ¢J E V we have

(5.17)I¢JI~

(lin) L7= I (¢J(t i ))2 = + CIJ

and

(5.18 )

The same reasoning works for i? n + 1 and thus the eigenvalues of the
matrix problem are given by (5.16) only for i= 1, ..., n.

Now we can use Theorem 3.3 and get for any ¢JED-mU('~,d) with
L7~ 1 [¢J(t j )]2 # 0

I¢JI~ >- I¢JI~
(lin) Lj~ 1[¢J(t j )] 2 r Bo{ 1¢J16.Q + h2m l¢J1 ~} .

(5.19 )

Thus

1
Ilin? -B Pin'

o
i= 1, 2, ..., n, (5.20)
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where P In ~ ... ~ Pnn are the first n eigenvalues of the variational eigen
value problem

which are given by

any rP E D m L 2(lRd),

Thus (5.20) implies

i=I,2, ... ,n,

i= 1, ... , n.

(5.21 )

But as we shall see later /lih2m, i = 1, ..., n, is bounded from above, i.e,
there exists rJ. > 0 such that

i= 1, 2, ..., n, (5.22)

which gives the first inequality in (5.8).
Using now Theorem 3.4 we get

which implies that

i = 1, 2, ... , n, (5.23 )

where the C, 's are the first n eigenvalues of

which are given by

Thus

;: /lin
.., in = 1+ h2m .'

/lm
i = 1, 2, ..., n. (5.24)

/lin ~ CO/li(l + h
2m

/l in )

~ CO/l i( 1+ h2m/l nn ). (5.25 )
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(c) h2mflnn is bounded. To see this, let tPnn be the corresponding eigen
function. Then, given that tPnn is a thin plate spline, we have

Min lul~.
u E D- mL2(1R d)

u(t,) ~ 1>nn(t,) i= 1"",n

(5.26)

Let us now define w as the CX([Rd) function with support B(O, 1):

O~ lsi ~ 1

lsi> 1.
(5.27)

(t- t)wi(t) = w -,-' .
hm1n

Moreover, given the definition of hmin , we have

(5.28 )

i=j

i#j

Thus

n

U = I tPnn(tj) W j
j=1

(5.29)

belongs to D- mL 2([Rd) and u(tj) = rPn1/(tJ, j = 1, ..., n, Using (5.26) we get

But given the definition u and the w/s we have

1/

IrPl1nl~~ lul~= L [rPnl1(tj)]2Iwjl~,
j~l

To compute IWjl~ we use (5.28) and conclude that

This together with (5.30) finally gives

(5.30 )

(5.31 )
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And using (1.14) again

hd hd Mt Vol(Q)
min:::;:::; V

n d

and

I¢""I~,:::;h 2m B2mM(~:ol(Q) Iwl~ ~ itl [¢",,(t)]2,

which implies that

21

proving that h2mP"" is bounded. This together with (5.25), except for the
problem with (5.22), concludes the proof of the theorem. I

Now we study the behavior of the eigenvalues PI :::; P2:::; ....

LEMMA 5.2. Let Q be an open bounded domain with Lipschitz boundary
and satisfying a uniform cone condition. Let PI :::; P2:::; ... be the eigenvalues
of the variational problem (5.9) and let PI :::;P2:::; ... be the eigenvalues of

(5.32)

Then there exists a constant K(Q) such that

i= 1,2, .... (5.33 )

Proof Let ¢ I be the eigenfunction of (5.9) corresponding to the eigen
value Pi normalized by I¢, 16.Q = I, and let IjJ I be the eigenfunction of (5.26)
corresponding to the eigenvalue P, normalized by IIjJ 116 Q = I.

As has been proved in [10] under the given hypothe~is on Q there exists
a unique ¢f extending ¢, to D-·mL2(~d) which minimizes l'I~I' On the
other hand <PiIQ, the restriction of <P, to Q, belongs to Hm(Q), hence it can
be extended uniquely to D-mL2(~d)with minimum I'I~ seminorm. Let ¢f
be that extension. We first prove that ¢f = ¢,. We have

P,= I¢,I~= Min lul~"
(u.<P/)O,Q = 0

I ~j~i I

lul6,Q ~ I
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but (rP?, rPj)o,Q=O since rP? = rP; on Q and IrP?I~~ IrP;I~; then

/-i;= Min lul~~lrP?I~~lrP;l~
(U'¢J)O,Q ~ 0
\ ,,;;j,,;;;- \

IUI6,Q~ \

and we conclude that

The extension being unique we conclude that rP; = rP?, Thus /-ii' rP; can also
be defined by

/-i;= Min luQI~,
(U'¢J)O,Q ~ 0
\ ";;j";;;-\

luI6,Q~ \
U E H"'(Q)

(5,34)

But according to Duchon [10] there exists a constant K(Q) depending
only on Q such that for any u E Hm(Q) we have

hence

/-i;= Min luQI~~K(Q) Min lul~,Q
(u,¢j)O,Q ~ 0 (u,¢j)O,Q ~ 0

\ ";;j";; i-I j= 1, ...,;-\

uEHm(Q) uEHm(Q)

lul6,Q ~ I lul6.Q ~ I

~K(Q) Max Min lul~=K(Q)p;,
V subspace of H"'(Q) U E V

Codim( V) ~ ; - \ lul6,Q ~ \

On the other hand for any u E Hm(Q)

thus

p;= Min lul6 Q~ Min luQI~
(u,o/Jj)o,Q~O • (u,o/Jj)O.Q~O

l,,;;j";;;-! \,,;;j,,;;;-!
UEH"'(Q) uEHm(Q)

lul6.Q ~ ! lul6.Q ~ \

but for any vED-mL2([Rd) we have IvQI~~lvl~ and {rEHm(Q)lr=vI Q

some v E D -mL2([Rd)} = Hm(Q), hence
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Min luQI;,,=
lu.0/I110.<1 ~ 0

1 ~j:S:;: i -- I

uEHfIl(Q),
1ulo.<1 ~ I

Min luQI;"
(u.o/Illcl.!i~ 0
I ~j:S:;: j-- I

U E D- m L 2( [Hd)

1"16.<1~ 1

~ Max
v subspace of D-ml)([~d)

codim( VI ~ i 1

Min luQI;" = 11,.
UE V

1u<116.<1 ~ 1

This concludes the proof. I
We are now ready to give the main result of this section.

THEOREM 5.3. Let Q be an open, bounded subset of [Rd with Lipschitz
boundary and satisfying a uniform cone condition and let 11111 ~ 11211'" ~ 111111
be the eigenvalues of nF. Then there exist constants (X l' /31 > 0 such that for
M + 1~ i ~ n we have

(5.35)

Proof According to Theorem 5.1 and Lemma 5.2 it suffices to prove
that the eigenvalues P1 ~ P2 ~ ... satisfy a relationship of the type (5.35).
To see this we observe that P1 ~ P2 ~ ... are the eigenvalues of the differen
tial operator (- l)m Lim which is unbounded in L 2(Q) but symmetric in
C:>C(Q) with appropriate boundary conditions. We can then apply
Theorem 14.6 in [2] to conclude that the number of eigenvalues of this
operator less than or equal to C~2m/dpm/d is i(l + 0(1 )). C + is a constant
independent of i where o( 1) goes to zero as i increases. Thus there exist
integers N 1 , N 2 such that the number of p/s less than or equal to
C ~ 2m/di

2m
/
d is between N 1 i and N 2 i for any i. Thus

(5.36)

and

(5.37)

Thus

i=M+1, ....

This concludes the proof. I
This result had been conjectured by Wahba [18] in the general case and

has been proved by the author in one dimension in the case of equally
spaced data and general m in [17] and in the case of arbitrary spaced data
for cubic splines in [16]. Related work in several dimensions has been
done by Cox [6].
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Remark. From this result and (5.34) it is clear that

But we also have h 2m = O(n 2m/d) and conclude that

is bounded.

6. ERROR BOUNDS FOR NOISY DATA

With the results of the preceding section we can conclude the proof of
the main result of this paper.

Proof of Theorem 1.1. From (5.4) we have

For some constant C, thus if we set

we have

(6.1 )

(6.2)
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On the other hand from (5.5)

1 l n 1 J::::::-) v
2

M + L 1+ 'C'2m/d
n. i~M+l A]

1 0 [ 'd
oO fx 1 J,c - v- M + A - I_m .. dx .

" nJ.. M 1+ CX
2m

/
d

Thus if we set

Q2
= M;, d

O
/2m +fx 1 d

M 1 + CX2mld X

we have

where the integrals in (6.2) and (6.4) converge since m > d/2.
We can now use Theorem (3.4) and get

25

(6.3)

(6.4 )

But N),d/2m ~ 1; then if we set

we have

(6.5)

(6.6)

Finally we use the interpolation theorem for indermediate derivatives
(cr., for example, Theorem 4.14 in [1]) to get
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(6.7)

for Qo = P(Q3Co+ Q2)'
Finally we combine (2.11), (4.5) and (6.7) to obtain the desired

result. I
A similar result was obtained by Cox [6] for the case of splines defined

on a finite domain Q. Also for d = 1 this result was first proved by Ragozin
[13] in the case of equally spaced data points. Finally, let us remark that
the results of this theorem were already conjectured by Wahba [18].

To conclude this section we state the following straightforward corollary
of Theorem 1.1.

COROLLARY 6.1. Let Q be an open bounded domain of ~d with Lipschitz
boundary and satisfying a uniform cone condition. Let fE Hm(Q), m > d/2,
and {t I' ... , til} contain at least a ~n I -unisolvent set and

hmax ~ B
h

min
" .

Then the optimum upper bound on the rate of convergence is attained for

),* = O(n- 2m/(2m+d))

and is given by

E[lf- (JIIY ILa] = O(n -2(m +k)/(2m+d»).
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